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Abstract

Predicting a drivers’ intent (e.g., turns, lane changes) is
a critical capability for modern Advanced Driver Assistance
Systems (ADAS). While recent Multimodal Large Language
Models (MLLMs) show promise in general vision-language
tasks, we find that zero-shot MLLMs still lag behind domain-
specific approaches for Driver Intention Prediction (DIP).
To address this, we introduce DriveXplain, a zero-shot
framework based on MLLMs that leverages rich visual cues
such as optical flow and road semantics to automatically
generate both intention maneuver (what) and rich natural
language explanations (why). These maneuver–explanation
pairs are then distilled into a compact MLLM, which jointly
learns to predict intentions and corresponding explanations.
We show that incorporating explanations during training
leads to substantial gains over models trained solely on
labels, as distilling explanations instills reasoning capa-
bilities by enabling the model to understand not only what
decisions to make but also why those decisions are made.
Comprehensive experiments across structured (Brain4Cars,
AIDE) and unstructured (DAAD) datasets demonstrate
that our approach achieves state-of-the-art results in
DIP task, outperforming zero-shot and domain-specific
baselines. We also present ablation studies to evaluate
key design choices in our framework. This work sets a
direction for more explainable and generalizable intention
prediction in autonomous driving systems. Project webpage:
https://avijit9.github.io/DriveXplain/

1. Introduction
ADAS are essential for improving driver safety and enabling
autonomous driving [24] that supports drivers in navigation
and managing safety-critical situations. A key emerging
capability is predicting a driver’s intention [13] before the
execution of a maneuver (e.g., lane changes, turns, slow-
stop), enabling timely interventions and collision avoidance.
Though prior DIP methods such as CNN-LSTM [10, 32]
and Transformer-based [20, 45] primarily focused on accu-
rately predicting what maneuver the driver will take. They
lacked the ability to explain why that maneuver was chosen.

*Both authors have contributed equally to this research.

(what) Left Lane Change

Prev. DIP: Only Intent Prediction (What Maneuver) 
Our DIP: Intent Prediction (What Maneuver) with Explanation (Why)

CollisionStraight

Ground Truth:Left Lane Change
LLAVA-Video, MiniCPM v2.6, VideoLLaMA, LongVU -  Straight, Qwen 2.5 - Slow down, 
Tarsier - Left turn
ED: Left lane Change

(Why) Explanation: The scene occurs under a flyover in a busy urban setting. There are several surrounding 
vehicles, including cars, motorcycles, and a truck, which are driving or parked along the street. Additionally, 
the lane markings (though faint) and divider presence make a right turn unlikely in this specific setting.

Figure 1. Illustration of a driving scenario where the ADAS vehicle
predicts a left lane change (what) to avoid slower traffic ahead
(why). Existing DIP [10, 20, 32, 45] models lacking reasoning
may miss such cues, while our framework jointly learns and distills
both maneuver and explanation, improving decision quality.

Without accompanying reasoning, such predictions lack con-
textual grounding, limiting their reliability in real-world sce-
narios, particularly in ambiguous or safety-critical situations.

Recently, MLLMs [1, 4, 6, 7, 12, 17, 34, 50, 52, 53]
have emerged as a powerful and general-purpose solution
for a wide range of computer vision tasks, including
image captioning [17], visual question answering [28], and
video understanding [53]. These models combine vision
encoders [36, 39] with language decoders [3, 38], allowing
them to interpret and reason visual inputs through natural
language. Due to their strong capabilities in visual under-
standing and natural language generation, MLLMs have
become a natural choice for complex tasks like DIP. Despite
their generalization strengths, zero-shot MLLMs often strug-
gle in DIP settings because they lack the domain-specific
context and driving-relevant cues necessary for accurate
intention prediction. This shortfall limits their performance
compared to specialized DIP models [10, 20, 32, 45] and
prevents them from fully utilizing their reasoning potential
in safety-critical driving scenarios (refer Sec. 4).

To address this gap, we introduce DriveXplain, a
zero-shot framework that leverages a novel prompting
strategy with specialized visual inputs such as optical flow,
road semantics and surrounding context extracted from
raw videos to provide driving-specific contextual cues
to an LLM (e.g., LLaMA-3.1-8B [9]), enabling accurate
prediction of driving maneuvers. Moreover, DriveXplain
is also capable of generating explanations that accompany
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its predicted maneuvers. We empirically demonstrate
that DriveXplain achieves state-of-the-art results despite
not being trained on any driving video data. However,
the approach is somewhat impractical for real-world
deployment due to its large model size and dependence on
specialized visual inputs extracted from raw videos.

To this end, we propose a knowledge distillation [11]
approach that transfers the knowledge acquired by
DriveXplain into a smaller, more efficient MLLM (e.g.,
Video-LLaMA [53], Qwen2.5-VL [4]). Additionally, to
transfer the reasoning capabilities of DriveXplain, we distill
its generated explanations into a smaller MLLM. Consider
an illustration in Figure 1, where an autonomous vehicle
performs a left lane change maneuver (what) to avoid slower
traffic ahead by utilizing a clear left lane (why). Capturing
such reasoning can enhance safety, reduce mispredictions,
and improve generalization in diverse scenarios. Existing
DIP methods [10, 20, 32, 45] focus primarily on predicting
what maneuver occurs, often overlooking the reasoning of
why that maneuver was taken. These models, typically built
on modality-specific encoders and sequential architectures,
are limited in their ability to capture broader context,
multi-agent dynamics, or causal factors, hindering their
capacity to jointly predict and explain drivers’ intent. In
summary, our framework DriveXplain jointly generates
maneuvers and corresponding explanations, which are
distilled into a single MLLM [4, 53]. These distilled models,
Video-LLaMA-ED and Qwen2.5-VL-ED, capture both
decisions and their rationale, offering improved inference
efficiency (refer Table 1) and scalability for DIP.

The main contributions of our work are:
1. We are the first to conduct a comprehensive evalua-

tion of multiple general-purpose and driving-specific
MLLMs [6, 7, 17, 21, 34, 42, 50, 53] on the DIP task [45],
experimentally demonstrating that these MLLMs con-
sistently fail to reliably predict drivers’ intentions.

2. We introduce DriveXplain, a framework that enhances
maneuver prediction by incorporating driving-specific
contextual information.

3. We present an explanation-guided distillation strategy
to transfer both the what (maneuver) and the why
(reasoning) from DriveXplain into a single, unified
MLLM for enhanced maneuver prediction.

4. We perform extensive quantitative and qualitative eval-
uations of the MLLMs on structured (Brain4Cars [13],
AIDE [49]) and unstructured (DAAD [45]) DIP datasets.
Our method consistently outperforms prior approaches,
demonstrating the effectiveness of proposed framework.

2. Related Work

2.1. Driver Intention Prediction
Traditional DIP methods have relied on bidirectional
RNNs [26] and CNN-LSTM architectures [10, 13, 14, 16,
32], that primarily focus on spatial features while offer-

ing limited temporal modeling. This restricts their effec-
tiveness in capturing long-range dependencies essential for
accurate intent prediction. To overcome these limitations,
transformer-based architectures [40] were introduced, offer-
ing improved performance by modeling long-term temporal
context. Recently memory-augmented methods such as
CEMFormer [20] and M2MVIT [45] have further enhanced
temporal consistency and anticipation robustness. Despite
these advances, existing DIP methods treat the task as a clas-
sification problem, predicting what maneuver will be per-
formed without addressing why that maneuver is expected.
This lack of explanation limits their applicability in safety-
critical, real-world ADAS scenarios. To address this limita-
tion, we propose a DIP framework that improves maneuver
prediction and provides human-understandable reasoning.

2.2. MLLMs for Driving
Recent progress in MLLMs, encompassing both
closed-source models [1, 12] and their open-source counter-
parts [4, 6, 7, 17, 34, 50, 52, 53], has significantly advanced
the state of computer vision, including domain-specific tasks
such as autonomous driving [21]. These models leverage
large-scale pretraining on image-text or video-text pairs
to capture spatial, semantic, and, in some cases, temporal
dependencies. The integration of LLMs into vision tasks
has enabled more expressive multimodal interactions and
strengthened visual understanding capabilities. Though pow-
erful in multimodal understanding, their ability to generalize
to fine-grained, causal reasoning tasks remains limited [28]
and largely unexplored especially in the context of DIP.

Recent works have begun incorporating reasoning
as additional modality, to enhance model perfor-
mance [19, 25, 30, 44, 46]. In autonomous driving [8, 55],
this has led to applications such as driving captioning [2, 15],
question answering [23, 31, 35, 43], conversational driver
assistants [29], driving actions [22], as well as scene un-
derstanding and planning [37, 47]. However, these models
mainly focus on what is the maneuver and rarely address
why specific driving decisions are made. In contrast, we
propose a unified framework that jointly models both the ma-
neuver prediction (what) and its underlying rationale (why).

2.3. Knowledge Distillation
Knowledge distillation (KD) [11] has been widely adopted
to compress large teacher models into smaller, efficient
student models to improve the efficiency of inference.
Distillation approaches can generally be categorized into
three types, namely, logit-based [5], feature-based [51],
and explanation-based [27]. Logit-based KD [5] aligns
the output distributions (logits) of the teacher and student
models. Feature-based KD [51], on the other hand,
encourages the student to mimic the teacher’s intermediate
activation maps. Recently, explanation-based distillation has
gained traction; for example, Parchami et al. [27] proposed
a simple, parameter-free method where the student is trained



Figure 2. Our proposed framework for the DIP task. DriveXplain generates natural language explanations alongside maneuvers and
Explanation Distillation distills these explanations into a single MLLM to enhance DIP performance at inference.

to produce explanations similar to those of the teacher.
In the context of MLLMs, prior work has explored

distilling Chain-of-Thought (CoT) [46] reasoning into
smaller MLLMs [19]. However, the challenge of distilling
specialized visual inputs such as those required in driving
scenarios remains largely underexplored. In particular,
existing methods do not address how to compress large
MLLMs that rely on rich, domain-specific visual inputs
into smaller models capable of both accurate prediction and
reasoning. In this work, we address this gap by distilling
both the intended maneuver (what) and the corresponding
natural language explanations (why), generated by a large,
zero-shot MLLM framework into a single, compact MLLM
trained to jointly predict what the driver will do and why.

3. Methodology

We propose a DIP framework that goes beyond classifying
driver maneuvers (what) from video, addressing limitations
of prior approaches [10, 20, 32, 45]. Our framework not
only predicts driver maneuvers (what) but also generates
natural language explanations (why) to justify each decision,
thus enhancing transparency, trust, and applicability in
safety-critical driving scenarios. Given a video input
V ∈RT×H×W×C consisting of T frames from a driving
perspective, the objective is to predict the driver’s maneuver
ŷ ∈ Y , where Y represents the set of possible maneuver
classes (e.g., turns, lane changes, straight, slow-stop), and
simultaneously generate a explanation E that reasons the
predicted maneuver.

Our proposed framework as shown in Figure 2 consists
of two key stages:
• DriveXplain (§ 3.1): A 15B-parameter model that

generates maneuver predictions and corresponding
explanations using a novel structured prompting strategy
in a zero-shot manner. Although DriveXplain delivers
improved predictions and explanations, its large model
size poses challenges for efficient inference, especially

in latency-sensitive or resource-constrained settings.
• Explanation Distillation (ED) (§ 3.2): To mitigate the

above limitation, we introduce an Explanation Distillation
stage, where the reasoning capabilities of DriveXplain
are compressed into a single 7B MLLM. This distilled
model retains predictive and explanatory performance
while enabling faster and more scalable inference.

3.1. DriveXplain
One straightforward approach to DIP is to prompt existing
MLLMs [6, 7, 17, 34, 42, 50, 53] in a zero-shot setting. How-
ever, as we demonstrate empirically in § 4.2, these MLLMs
struggle to accurately predict driver intentions, even when
pre-trained on driving-related video data. This limitation can
be primarily attributed to their lack of access to structured
contextual information, such as temporal cues, traffic
semantics, and driver-centric observations, which are critical
to reliably anticipating maneuvers. In this work, we aim
to address the core question: How can we effectively provide
relevant driving context to MLLMs to enable accurate DIP?

Given an input video V , we uniformly sample a set
of T frames F = {f1,f2,··· ,fT}. The DriveXplain stage
comprises three key modules: scene context, surrounding
context, and motion context, detailed below.

3.1.1. Scene Context
Captures the broader environmental and semantic context
of the driving scene by combining high-level video captions
that summarize the overall scene (e.g., “approaching a busy
urban intersection”) with fine-grained frame-level captions
that provide temporal details (e.g., “traffic light turns green”,
“pedestrian crossing ahead”). This fusion enables the model
to reason about road layout, static infrastructure, traffic signs,
and temporal scene evolution, key elements for accurately an-
ticipating driver maneuvers. We use a MLLM (M) to extract
frame-wise captions Cf = {M(f1),M(f2), ··· ,M(fT )}
and a video-level caption Cv = M(V ). The prompt for
M is provided in the supplementary. The scene context



information is aggregated into Csc which is defined as:

Csc={Cf ,Cv} (1)

3.1.2. Surrounding Context
To better capture the driver’s interaction with surrounding
objects, while objects such as traffic lights may be identified
in scene context, the underlying behavioral cues, such as
slowing down or preparing to stop, are often not explicitly
modeled. To address this, we sample frames uniformly from
each video. For each frame ft, we apply an object detection
model O to extract vehicle surrounding cues. The model
returns a set of detections, where each detection consists
of an object class ot,i, a confidence score ct,i∈ [0,1], and a
2D position pt,i∈R2. The surrounding context information
(Csrc) of the video is represented as:

Csrc=
{
{ot,i,ct,i,pt,i}Ni=1

}T
t=1

. (2)

3.1.3. Motion Context
Captures ego-vehicle’s dynamic behavior over time, and
reflects patterns such as lateral shifts (e.g., left-to-right)
and abrupt directional changes signaling maneuvers. These
cues carry essential semantic information that conventional
language models and MLLMs are not equipped to handle
directly. To address this, we use two modules: Optical
Flow Masking (OFM), which highlights motion regions
via pixel-wise frame displacements, and Road and Lane
Masking (RLM), which isolates road and lane boundaries
to provide spatial context for vehicle movement.
Optical Flow Masking. To encode spatial layout and
motion dynamics we compute the optical flow between
each pair of consecutive frames. Let It and It+1 denote
two such frames from video V . The optical flow map is
denoted as Ft ∈ RH×W×2, where each vector Ft(x,y)
captures the horizontal and vertical displacement at pixel
location (x,y). We divide each optical flow map into P
non-overlapping patches of size p×p. For each patch i in
frame t, we compute the average flow vector as:

v⃗t,i=
1

p2

∑
(x,y)∈patchi

Ft(x,y). (3)

To model directionality dt,i for each patch i for frame ft,
we define a motion label based on v⃗t,i. The direction label
is defined as:

dt,i=


left if v⃗t,i<−θ,

right if v⃗t,i>θ,

none otherwise,
(4)

where θ is a predefined threshold for horizontal motion. In
practice, we consider only the horizontal component of v⃗t,i,
as vehicle movement occurs primarily in the lateral direction
on the road.
Road and Lane Masking. We also obtain semantic segmen-
tation maps for each frame ft, denoted asSt∈{0,1,2}H×W ,

where 0 denotes background, 1 indicates road, and 2
represents lane markings. For each patch i of frame ft, a
semantic label is assigned as:

st,i=


lane if majority of pixels are labeled 2,

road if majority are labeled 1,

road and lane if significant mix of 1 and 2,

none otherwise
(5)

Thus, each patch is described by a tuple {dt,i, st,i},
which captures both spatial and directional semantics. These
patch-level descriptors are aggregated across the sampled
frames F , forming the structured representation as:

Cmc=
{
{dt,i,st,i}Pi=1

}T
t=1

. (6)

The contextual cues (Csc,Csrc,Cmc) are text-based
representations derived from visual inputs, providing
driving-specific context. These are fed into an LLM to
infer the driver’s intent and predict the maneuver ŷ∈Y . A
sample prompt is illustrated in Figure 3. Since LLM may
not inherently understand the structure of our proposed
motion cues Cmc, such as OFM and RLM, we incorporate
in-context examples within the prompt to facilitate better
comprehension and interpretation.

3.2. Explanation Distillation
Our proposed framework, DriveXplain, operates in a
zero-shot setting. Although DriveXplain demonstrates
strong performance, its large size (15B parameters) and
reliance on modality-specific inputs such as optical flow and
lane masks limit its practicality for real-world deployment.
To address this, we distill its knowledge into a more compact
7B MLLM for efficient inference.

In particular, when a training set of videos (V,y) is
available, we leverage DriveXplain to generate both the
maneuver classes y and corresponding explanations E
(refer supplementary for the prompt). This knowledge is
then distilled into a MLLM to enable end-to-end prediction
of driver intents directly from raw visual inputs. However,
the generated explanations E may be noisy, as they are
produced by the model and may not always be accurate. We
identify two primary sources of noise: (a) incorrect maneu-
ver predictions, which render the entire set of explanations
unreliable (§ 3.2.1); and (b) partial inconsistency, where the
predicted maneuver is correct, but some explanations are
informative while others are flawed (§ 3.2.2).

3.2.1. Explanations Filtering
To ensure explanation quality, we retain only samples
where the predicted maneuver ŷ matches the ground-truth
y from the DIP dataset D, discarding those with incorrect
predictions and their associated explanations. We denote
the filtered dataset as Dclean, defined as:



Dclean={(V,y,E)∈D|ŷ=y}. (7)

3.2.2. Explanation Ordering
Filtering samples based on correct maneuver predictions
reduces maneuver class noise but does not guarantee the
quality of associated explanations. To further refine the
dataset Dclean, we use a frozen VLM J as a judge to
evaluate the alignment between the video V , its ground-truth
y, and each candidate explanation Ei, assigning a relevance
score (si) that reflects explanation consistency, defined as:

si=J (V,y,Ei). (8)

To refine explanation alignment, we explored two
strategies: numeric scoring and categorical ranking.
Empirically, we observed that categorical ranking (e.g.,
“strongly supported”, “moderately supported”, “supported”,
“weakly supported”, and “not supported”) proved more
stable and yielded better generalization than raw numerical
scores. Explanations with strong alignment are retained, and
the corresponding tuple (V,y,Ei) is included in the distilled
training set Ddist, defined as:

Ddist=
{
(V,y,E∗) |E∗=argmax

i
si

}
, (9)

where E∗∈E is the explanation with the highest alignment
score to the context. Refer to the supplementary for detailed
prompt examples.

3.2.3. Distillation
Finally, we distill the triplet (V,y,E∗)∼D into a smaller
MLLM QVLM [4, 53]. The model is trained via next-token
prediction using a cross-entropy loss, with the objective
of maximizing the likelihood of generating both the
explanation and maneuver tokens conditioned on the video
and prompt. By jointly training on the maneuver (what the
driver’s intention is) and the explanation (why that intention
is inferred), the model is encouraged to internalize both the
decision outcomes and the underlying reasoning process.
We denote the models trained with Explanation Distillation
as Video-LLaMA-ED and Qwen2.5-VL-ED.

3.3. Inference
During inference, we prompt the explanation distilled model
QVLM with the question “What is the maneuver being
performed?” and a test video. The model produces a unified
output that contains both the predicted maneuver and its
explanation. For evaluation, we extract the maneuver from
this response and compare it with the ground truth.

4. Results and Analysis
4.1. Experimental Setting
Datasets. We evaluate our unified framework, comprising
of DriveXplain and Explanation Distillation on two

Basic instruction: Analyze the following mul-
timodal inputs to classify the driving maneuver:
Frame-level captions, video caption, surrounding
context, RLM, and OFM.

Constraints: Respond strictly with one of the
maneuvers: right turn, right lane change, left turn,
left lane change, forward.

Task and label descriptions:
• Right turn: The vehicle makes a sharp or

significant turn to the right.
• Right lane change: The vehicle shifts into the

right lane.
• Left turn: The vehicle makes a sharp or

significant turn to the left.
• Left lane change: The vehicle shifts into the

left lane.
• Forward: The vehicle continues straight,

completes a maneuver, or comes to a stop.

OFM example:{example} Label: Right turn
RLM example:{example} Label: Right lane

Multi-modal input representations:
Frame-level captions:{Cf}; Video caption:{Cv};
Surrounding context:{Csrc}; OFM:{dt,i}; RLM:{st,i}
Output: <maneuver>

Figure 3. Prompt for driving maneuver classification in § 3.1.

structured datasets, Brain4Cars [13] and AIDE [49], and
one unstructured dataset, DAAD [45]. All performance
evaluations are conducted on the respective test sets of
these datasets. Notably, none of these datasets include
ground-truth explanation annotations corresponding to the
maneuver classes. Consequently, our evaluation focuses
solely on intent classification metrics, and exclude metrics
related to semantic explanation quality.
Models. We compare our framework with state-of-the-art
(SOTA) models from video understanding and vision-
language domains. From the DIP literature, we consider
action anticipation models, including CNN-LSTM [10, 32],
CEMFormer [20], and M2MVT [45]. Additionally, we
evaluate several general-purpose SOTA MLLMs in the zero-
short setting, including InternVL [7], Mini-CPM-V 2.6 [50],
LLaVA Next [17], Video-LLaMA [53], ShareGPT4 [6],
Tarsier [42], and LongVU [34], as well as a driving-specific
MLLM Dolphins [21].
Metrics. To evaluate DIP performance, we follow standard
protocols from previous works [10, 20, 45], using accuracy
and F1-score as the primary evaluation metrics.
Implementation Details. To extract scene context Csc
(§ 3.1.1), we utilize Video-LLaMA [53] to obtain video-level
captions (Cv), and LLaVA [18] to generate frame-wise cap-
tions (Cf ). For vehicle detection and trajectory estimation,
used to model the surrounding traffic context Csrc (§ 3.1.2),
we adopt CenterTrack [54]. To derive motion context Cmc



Model Params FineTune Brain4Cars [13] AIDE [49] DAAD [45]

Acc. F1 Acc. F1 Acc. F1

Dolphins [21] 9B ✗ 40.25 38.73 58.67 55.64 30.45 28.99
InternVL2 [7] 8B ✗ 34.57 27.54 60.24 60.55 9.39 23.84
Mini-CPM-V 2.6 [50] 8B ✗ 35.82 31.36 57.34 59.06 22.14 12.86
LLaVA-NeXT [17] 7B ✗ 10.86 2.16 37.34 69.37 24.83 9.87
Video-LLaMA [53] 7B ✗ 38.60 23.71 67.79 62.07 22.14 9.20
ShareGPT4V [6] 7B ✗ 20.87 19.89 55.79 55.72 20.80 18.28
Tarsier [42] 7B ✗ 29.71 24.08 59.27 63.78 21.47 9.25
LongVU [34] 7B ✗ 26.08 20.56 19.03 27.70 15.43 14.31
Qwen2.5-VL [4] 7B ✗ 41.66 33.15 69.49 66.59 32.21 17.70
Video-LLaMA 3 [52] 7B ✗ 25.73 23.91 57.90 59.37 26.17 21.01
Video-LLaMA [53] 7B ✓ 44.00 41.67 49.34 37.47 36.48 52.08
Qwen2.5-VL [4] 7B ✓ 48.77 39.90 71.38 70.49 39.74 40.92

Gebert et al. [10] 0.24B ✗ 72.89 69.59 72.89 69.59 52.65 48.15
Rong et al. [32] 0.16B ✗ 58.71 62.75 73.45 70.17 50.31 54.05
CEMFormer [20] 0.08B ✗ 63.27 65.35 75.90 73.25 58.87 59.31
M2MVT [45] 0.03B ✗ 64.07 65.35 75.90 73.25 58.78 59.91

DriveXplain (Video-LLaMA) 15B ✗ 72.33 71.34 78.93 53.14 52.52 44.31
DriveXplain (Qwen 2.5-VL) 15B ✗ 64.49 52.96 52.22 51.83 42.28 46.96
Mobile-VideoGPT-ED [33] 0.5B ✓ 60.31 56.97 68.93 66.38 50.30 46.00
Mobile-VideoGPT-ED [33] 1.5B ✓ 61.85 60.09 71.49 71.92 52.10 47.33
Video-LLaMA-ED 7B ✓ 71.24 73.29 80.47 78.90 57.66 54.03
Qwen2.5-VL-ED 7B ✓ 72.28 73.81 77.80 75.64 62.40 62.98

Table 1. DIP benchmark results. Performance comparison of Driving-specific VLM , General VLMs , Action Anticipation models ,

and our framework ( DriveXplain , ED ). Accuracy (Acc.) and F1(%) on Brain4Cars [13], AIDE [49], and DAAD [45] datasets. Finetune
indicates whether the model was fine-tuned (✓) or evaluated in a zero-shot (✗) setting. Bold and underline is for best and second-best results.

(§ 3.1.3), we employ HybridNets [41] for road and lane
segmentation (st,i), and compute dense optical flow (dt,i)
using the Farneback algorithm provided by OpenCV. For
all datasets, video frames are uniformly sampled at 1FPS
to ensure consistent and descriptive scene representations.
The language model responsible for predicting maneuvers
and generating (maneuver, explanation) pairs is LLaMA-3.1
(8B) [9]. We use Qwen2.5-VL [4] for as the judge J in ex-
planation ordering (§ 3.2.2). All components in our pipeline,
including VLMs and LLMs, operate in a zero-shot setting,
except during the Explanation Distillation stage, where
fine-tuning is conducted. Further details on the distillation
procedure and hyperparameters for Video-LLaMA [53] and
Qwen2.5-VL [48] are provided in the supplementary.

4.2. Comparisons with State-of-the-Arts

Zero-shot MLLMs. First, we evaluate a range of MLLMs,
including both general-purpose and driving-specific models,
as summarized in Table 1. In particular, we include
MLLMs such as InternVL2 [7], Mini-CPM-V 2.6 [50],
LLaVA-NeXT [17], Video-LLaMA [53], ShareGPT4 [6],
Tarsier [42], LongVU [34] and the driving-specific model
Dolphins [21] to assess their zero-shot performance on
DIP. All models are evaluated using their default inference
settings without task-specific fine-tuning. While many
models demonstrate inconsistent maneuver classification
performance (i.e., answering what), Qwen2.5-VL [4]
shows reasonable performance over other models across
Brain4Cars [13], AIDE [49], and DAAD [45] datasets. This

can be attributed to their accurate object grounding and the
use of dynamic FPS sampling.
Effectiveness of DriveXplain. Second, we evaluate our pro-
posed DriveXplain by comparing it against state-of-the-art
MLLMs and DIP methods. Notably, DriveXplain operates
in a zero-shot setting and does not require any training data.
We summarize these results in Table 1. Our DriveXplain
significantly outperforms both general-purpose MLLMs [6,
7, 17, 34, 42, 50, 53] and existing action anticipation-based
DIP models [10, 20, 32, 45] both in zero-shot and finetuned
settings. Specifically, using Qwen2.5-VL [4], DriveXplain
achieves accuracy improvements of 16% on Brain4Cars [13],
19% on AIDE [49], and 3% on DAAD [45] compared to
general-purpose finetuned models. Similarly, with finetuned
Video-LLaMA [53], it surpasses these models by 28%, 37%,
and 16% on the respective datasets. While its performance
is comparable to specialized DIP models [10, 20, 32, 45] for
maneuver classification, DriveXplain does not require any
training data and operates in zero-shot settings.

The strong performance gains of our DriveXplain frame-
work stem from its effective use of driving-specific contex-
tual information. By combining visual and geometric cues
into high-level MLLM-generated descriptions, our model is
better equipped to recognize complex patterns for accurate
intent prediction. In contrast, existing MLLMs often default
to predicting the ‘forward’ class due to their limited ability to
incorporate low-level geometric and directional information,
which is essential for reliable driver intention prediction.
Effectiveness of ED. Third, we evaluate the impact of



OFM RLM Csrc Acc. (%) F1 (%)

✗ ✗ ✗ 39.49 - 24.55 -

✗ ✓ ✓ 48.00 ↑8.51% 57.87 ↑33.32%

✓ ✗ ✓ 56.36 ↑16.87% 54.27 ↑41.42%

✓ ✓ ✗ 65.45 ↑25.96% 65.97 ↑168.7%

✓ ✓ ✓ 72.33 ↑32.84% 71.34 ↑46.79%

Table 2. Component-level ablation. Significance of modules
(OFM, RLM, and Csrc) for our framework on Brain4Cars [13]
dataset. Percentage gains are shown relative to the first row.

ED by comparing MLLMs fine-tuned with (maneuver,
explanation) pairs against zero-shot baselines. Specifically,
we distill both the what (maneuver) and why (explanation)
from our DriveXplain into best performing smaller models
such as Video-LLaMA and Qwen2.5-VL, referred to
as Video-LLaMA-ED and Qwen2.5-VL-ED in Table 1.
Models trained only on maneuver classes consistently
underperform, highlighting the limitations of conventional
supervision, especially with the limited size of DIP
datasets. In contrast, ED improves performance across all
benchmarks by providing richer supervision.

Our fine-tuned models achieve state-of-the-art results,
surpassing prior work by 4.57% on AIDE [49] and 3.53%
on DAAD [45]. They also perform competitively on
Brain4Cars [13] and outperform DriveXplain by 1.95%
on AIDE and 9.88% on DAAD. To further assess the
effectiveness of our knowledge distillation, we evaluate the
recent lightweight Mobile-VideoGPT [33]. The distilled
variants, Mobile-VideoGPT-ED (0.5B and 1.5B), consis-
tently underperform, whereas the 7B model achieves clearly
superior results across all datasets. This demonstrates that
while smaller models retain part of the teacher’s capability,
a substantial performance gap remains, underscoring the
importance of model capacity in effective distillation and
aligning with scaling laws.

Additionally, we also measure the inference latency
of different models on Brain4Cars [13]. Among them,
Qwen2.5-VL-ED (7B) achieves the lowest latency at 329.77
± 55 ms per video, while InternVL2, LLaVA-NeXT, and
Video-LLaMA3 incur substantially higher latencies of 634
± 95 ms, 639 ± 85 ms, and 524 ± 70 ms, respectively.

4.3. Ablation Experiments
We conduct ablation studies to evaluate three key design
choices in our framework: (i) the influence of contextual
cues such as optical flow and lane masks (Table 2), (ii)
the effect of varying VLM and LLM configurations within
DriveXplain (Table 3), and (iii) the ability of VLMs to
independently generate explanations (Table 5).
Effects of Contextual Cues. To evaluate key components
such as OFM, RLM, and surrounding context (Csrc) we
perform ablations as shown in Table 2. Using only video-
and frame-level captions results in frequent prediction of for-
ward maneuver, indicating limited temporal and directional
understanding. Adding optical flow significantly improves

Model Params Accuracy

VLM-wise comparison with LLaMA 3.1 [9] fixed

LLaVA-Next Video [17] 7B 56.88
ShareGPT4V [6] 7B 51.44
Video-LLaMA [53] 7B 72.33

LLM-wise comparison with Video-LLaMA [53] fixed

Qwen2.5 [48] 7B 64.85
LLaMA-3.1 [9] 8B 72.33

Table 3. Proposed framework performance with different
VLMs and LLMs. Accuracy is reported for each model.

the prediction of turn-related maneuvers by capturing
coarse directional motion across frames with surrounding
context (Csrc) by 8.51% compared to the baseline. However,
the model still struggles with finer maneuvers such as lane
changes, where motion cues are subtle. Inclusion of lane
masks helps address this by providing structural layout infor-
mation, enhancing the model’s ability to detect lateral move-
ment with surrounding context (Csrc) by 8.36%. Further-
more, incorporating optical flow masks (OFM) along with
road and lane masks (RLM) outperforms the previous two
configurations by 9.09%, though it still does not achieve the
highest performance. The addition of surrounding context
provides high-level reasoning capabilities, enabling more ac-
curate inference of maneuvers such as U-turn and slowdown,
which require broader scene understanding. The full frame-
work, integrating VLM-generated descriptions with OFM,
RLM, and Csrc, achieves best performance, showning a gain
of 32.84% improvement on Brain4Cars [13] dataset. Thus
highlighting the complementary nature of these components.
Performance comparison of large models in our frame-
work. We evaluate the influence of model architecture by
analyzing the VLM and LLM components independently
(see Table 3). In the VLM comparison, Video-LLaMA [53]
shows superior performance, surpassing LLaVA-Next
Video [17] by 15% and ShareGPT4V [6] by 20% in ac-
curacy. For the LLM comparison, with Video-LLaMA fixed
as the visual encoder, LLaMA-3.1 [9] achieves 8% higher
accuracy than Qwen2.5 [48]. These results suggest that the
VLM contributes more significantly to downstream perfor-
mance. However, the best accuracy is obtained when both
VLM and LLM are strong and compatible, as shown by
the combination of Video-LLaMA and LLaMA-3.1. This
highlights the importance of temporal video comprehension
in the visual module and strong reasoning capabilities in the
language model for effective multimodal learning.
Can other MLLMs serve as Judge? To assess the impact
of the judge model on data quality for distillation, we
conduct an ablation study as shown in Table 4. The results
show that Qwen2.5-VL [4] serves as a much stronger judge
compared to LLaVA-NeXT [17] and Video-LLaMA3 [52],
both of which exhibit notable performance drops. This
highlights the critical role of the judge model, with



Brain4Cars

Dolphins
What Maneuver: Forward
Why Explanation: The vehicle is described as driving down the road without any 
indication of a directional shift, suggesting it is continuing straight.

Qwen 2.5-VL (zero-shot)
What Maneuver: Forward
Why Explanation: The vehicle is moving straight ahead on the street, as indicated 
by the consistent direction of travel and the lack of any sharp turns or lane 
changes.

GT: Right turn

Qwen 2.5-VL-ED with Heatmaps

What Maneuver: Right turn

Why Explanation: The vehicle's ensuring a smooth transition to the right. The 
surrounding environment, street signs, and vehicle traffic, supports the idea that 
the driver is navigating through a typical urban area at morning.

AIDE

Dolphins
What Maneuver: Forward
Why Explanation: The video shows forward-facing dashcam view with no mention 
of turning or lane changes, suggesting the vehicle is proceeding straight.

Qwen 2.5-VL (zero-shot)
What Maneuver: Forward
Why Explanation: The video shows a continuous and stable urban driving scene, 
with no change  of turns, lane changes, or abrupt directional shifts. The vehicle is 
surrounded by parked vehicles.

GT: Right turn

Qwen 2.5-VL-ED with Heatmaps
What Maneuver: Right turn
Why Explanation: The scene captures a busy urban street environment with 
pedestrians walking along the sidewalks and vehicles moving in both directions 
and a sign board in Chinese. The presence of an oncoming vehicle and the 
positioning of pedestrians near the curb suggest that the ego vehicle is 
approaching an intersection. The vehicle’s likely maneuver is a right turn.

DAAD

Dolphins
What Maneuver: Forward
Why Explanation: The video captures a busy street with multiple vehicles moving 
in various directions, but the focus remains on one rider proceeding forward.

Qwen 2.5-VL (zero-shot)
What Maneuver: Forward
Why Explanation: The vehicle is moving straight ahead on a multi-lane road with 
traffic lights, as indicated by the consistent speed and direction of travel.

GT: Right lane change

Qwen 2.5-VL-ED with Heatmaps

What Maneuver: Right lane change

Why Explanation: The surrounding context, including the presence of vehicles,  
scooters, , indicates that the driver is navigating through a crowded and 
dynamic environment. The vehicle's movement to the right lane likely serves to 
maintain speed or avoid obstacles.

Figure 4. Qualitative comparison of proposed framework, zero-shot Qwen2.5-VL [4], Dolphins across Brain4cars [13], AIDE [49],
and DAAD [45] datasets. We show maneuver prediction (what) and explanation (why), with attention heatmaps highlighting key regions.

Judge Model Params Finetuning Accuracy

Video-LLaMA-ED Qwen2.5-VL-ED

LLaVA-NeXT [17] 7B 61.47 64.55
Video-LLaMA3 [52] 7B 68.99 70.37

Ours (Qwen2.5-VL [4]) 7B 72.28 71.24

Table 4. Performance comparison of ED on Brain4Cars [13]
using different MLLMs as judge models for filtering.

Qwen2.5-VL [4] establishing a more reliable benchmark.
Can MLLMs directly generate explanations? Our
analysis reveals that existing MLLMs, domain-specific [21]
or best generic model [4], they are inadequate for producing
high-quality, causally grounded explanations in driving
scenarios. When tasked with generating maneuver intent
and corresponding explanations, these models tend to pro-
duce generic and temporally shallow descriptions that lack
the fine-grained motion and contextual semantics critical
necessary for reliable decision-level understanding. As
shown in Table 5, this leads to degraded performance across
all DIP datasets. These findings suggest that off-the-shelf
MLLMs, without additional reasoning or structured inputs,
are not well-suited for generating actionable explanations in
downstream tasks. Examples are provided in supplementary.

4.4. Qualitative Analysis
As shown in Figure 4, our framework comprising of Ex-
planation Distillation consistently produces more accurate
and semantically grounded maneuver predictions across all
datasets. On structured datasets such as Brain4Cars [13]
and AIDE [49], driving-specific Dolphins and generic
Qwen2.5-VL models often mispredict the maneuver as
a forward maneuver when the ground truth is a right
turn. Their generated explanations lack spatial awareness,
due to the absence of directional cues. In contrast, our
framework correctly predicts a right turn (answering what)
and supports it with explanations (answering why) grounded
in scene semantics such as the presence of street signs,

Model Brain4Cars AIDE DAAD

Qwen2.5-VL [4] 12.31 22.89 24.83
Dolphins [21] 13.31 31.82 23.76

DriveXplain (Video-LLaMA) 52.89 44.31 40.93
DriveXplain (Qwen2.5-VL) 43.11 42.14 44.29

Table 5. DriveXplain results on zero-shot VLMs. Maneuver
prediction accuracy is reported in %. Bold and underline indicate
best and second-best results.

traffic flow, and surrounding urban environment structures.
The corresponding attention heatmaps localize relevant
contextual regions such as intersection entry points and
curb directions, further reinforcing model focus. A similar
observation holds for the DAAD [45] dataset, further
reinforcing the efficacy of our proposed approach.

5. Conclusion
We present a novel approach to DIP that extends beyond
traditional action anticipation by jointly predicting a
driver’s maneuver (what) and providing natural language
explanations (why) for that action. This dual prediction
improves behavior understanding, supports reasoning, and
enhances decision-making in safety-critical autonomous
driving scenarios. To enable this, we propose DriveXplain, a
zero-shot MLLM-based framework that integrates multiple
visual cues such as scene context, surrounding environment,
motion dynamics (optical flow), and road semantics to
generate maneuver–explanation pairs. These pairs are
distilled into a compact model that learns both intention
and explanation in an end-to-end manner. This improves
both reasoning ability and inference efficiency. Our method
extensive quantitative and qualitative evaluations across
structured and unstructured driving datasets show consistent
performance improvements, underscoring the benefit of
explanation-driven supervision for intent prediction. We
hope our work advances the development of safer, more
transparent, and explainable driver assistance systems.
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