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Abstract

Tables play a key role in conveying structured data
across documents. Accurate table detection is crucial for
downstream tasks like structure recognition and informa-
tion extraction. However, current datasets lack diversity
in format, language, and layout, limiting real-world gen-
eralization. This underscores the need for well-annotated
datasets that are multi-lingual, layout-diverse, document-
agnostic, and format-rich.

To address these limitations, we introduce UniTabBank,
a large scale, diverse table detection dataset designed to
reflect realistic use cases. UniTabBank is characterized by
five key attributes: (i) Multi-Lingual — supporting 28 lan-
guages (including Arabic, English, Hindi, etc.); (ii) Multi-
Layout — encompassing both single-column and multi-
column documents; (iii) Multi-Type — covering a wide
range of document genres such as annual reports, books,
newspapers, and magazines; (iv) Multi-Format — compris-
ing scanned documents, photographed pages, and PDFs;
and finally (v) Scale and Annotation Quality — consists of
55,443 document page images with 82,114 accurately an-
notated table instances, offering scale and annotation pre-
cision.

Additionally, we introduce UniTabDet, a YOLO-based
model for table detection, which outperforms state-of-the-
arts on eight out of nine table detection benchmarks. Cross-
benchmark evaluation highlights the strong generalization
capability of UniTabBank compared to existing bench-
marks. The dataset and models are available here.

1. Introduction

Tables are an essential component of structured documents
such as reports, invoices, scientific articles, and govern-
ment forms, where they convey dense, relational informa-
tion in a compact layout [27]. Detecting tables accurately
is critical for downstream tasks like table structure recog-
nition [38, 39, 51], information extraction [25], and docu-

Figure 1. Examples of complex document pages with annotated
table bounding boxes with blue colored rectangles across different
document formats, types, layouts, and languages.

ment understanding [2, 27, 56]. Recent deep learning-based
methods [2, 16, 23, 36, 48] have achieved high accuracy
in table detection tasks, using object detection frameworks
such as Faster R-CNN [42], Cascade Mask R-CNN [3],
and YOLO [40], respectively. More recently, Transformer-
based models like DETR [4], ViT [8], and Deformable-
DETR [60] have also been explored for table detection [1,
47, 55]. However, these models are often trained and evalu-
ated on monolingual (mostly English), limited layouts, sin-
gle domain-source datasets (e.g., ICDAR-2013 [17], Table-
Bank [29], and PubTables-1M [47]), which may not ad-
equately represent the challenges posed by multi-lingual,
multi-layout, multi-type, multi-format documents. These
challenges include differences in script, font rendering,
complex document and table layouts, etc. Due to the lim-
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Figure 2. Illustrates the performance of two state-of-the-art mod-
els — Table-Transformer (TATR) [59] and SparseTableDet [56]
— across varying conditions. The images with red boundaries
indicate failure cases. The images with green boundaries indi-
cate success cases. The first row shows documents with the
same layout but in different languages (English, Arabic, and
French). The second row presents documents in English across
multiple types: Annual Report, Magazine, and Newspaper.
The third row displays English documents containing tables
with diverse layouts: (i) bordered with separator lines, (ii)
without borders but with separator lines, and (iii) without both
borders and separator lines. In the visualizations, pink and green
dotted boxes represent the table detections by SparseTableDet
and Table-Transformer, respectively, while blue boxes indicate the
ground truth. Both models perform well when layout remains con-
sistent across languages. However, they struggle to accurately
detect tables in documents of varied types and especially under
complex or minimal table layouts, highlighting the limitations of
current approaches in real-world scenarios.

itations of these datasets, the state-of-the-art fails to de-
tect tables accurately in such cases. Fig. 2 illustrates ta-
ble detection outputs using Table-Transformer [47] (trained
exclusively on the large-scale PubTables-1M [47]) and
SparseTableDet [56] (trained on the domain-specific ICT-
TD [57]). Both models often fail to detect tables accurately
across diverse document types and complex layouts. Im-
ages with red boundaries highlight failure cases, while those
with green boundaries indicate successful detections. These
limitations highlight the challenges in generalizing table de-
tection models beyond their training distributions.

Many benchmarks exist for table detection shown in
Table 1, including ICDAR-2013 [17], UNLV [45], Deep-
Figures [46], ICDAR-2019 [13], Marmot [10], TNCR [1],

STDW [18], ICT-TD [57], CamCap [43], CTE [15], Table-
Bank [29], and PubTables-1M [47]. However, despite their
contributions, most of these datasets exhibit following lim-
itations.

• Limited Domain Diversity: Most datasets are domain-
specific — e.g., ICDAR [17] (government), DeepFig-
ures [46] (scientific), TableBank [29] (Word/LaTeX), and
PubTables-1M [47] (PMCOA) — limiting generalization
to diverse real-world documents like invoices, magazines,
and books (see Table 1).

• Language Bias: Most datasets are predominantly in
English, with few exceptions like Marmot [10], Table-
Bank [18], and STDW [18] (see Table 1), limiting
progress in multi-lingual and low-resource settings.

• Lack of Layout Variability: Datasets like Table-
Bank [29], PubTables-1M [47], and DeepFigures [46]
focus on structured layouts (e.g., scientific articles), of-
fering limited coverage of complex or irregular formats
found in magazines, newspapers, and bank statements —
hindering cross-layout generalization.

• Document Source Homogeneity: Datasets such as
DeepFigures [46], TableBank [29], and PubTables-
1M [47] rely heavily on sources like arXiv and PM-
COA, resulting in stylistic and structural homogeneity
that can lead to overfitting and poor generalization to out-
of-distribution documents.

• Lack of Diverse Table Styles: Another common short-
coming is the lack of diverse table styles, such as border-
less or irregular tables, which are underrepresented out-
side TNCR [1].

• Data Volume Imbalance: While datasets like DeepFig-
ures [46], TableBank [29], and PubTables-1M [47] pro-
vide large-scale data, others such as ICDAR-2013 [17]
and Marmot [10] are small, limiting their effectiveness
for training deep models (refer Table 1).

• Lack of Real-world Noise: Many datasets — DeepFig-
ures [46], TableBank [29], and PubTables-1M [47] are
curated from clean, digital sources (refer Table 1). Sce-
narios with scanning artifacts or degraded print (common
in real-world documents) are often absent, affecting real-
world applicability.

To overcome these limitations, we introduce a new large-
scale dataset for table detection, called UniTabBank, de-
signed to be Multi-Lingual, Multi-Layout, Multi-Type, and
Multi-Format. UniTabBank offers several key advantages.
Language and Layout Diversity: it includes documents in
28 languages — such as Arabic, Chinese, English, Hindi,
Korean, Urdu, etc. and supports both single and multi-
column layouts, covering a wide range of real-world layout
scenarios. Format and Type Coverage: the dataset spans
three document formats (scanned, photographed, and PDF)
and four major document types (annual reports, books,
magazines, and newspapers). Given the widespread use



Dataset #Image #Instance A.M Format Document Type Language
ICDAR-2013 [17] 238 150 Manual PDF, Scanned Government documents English
ICDAR-2019 [13] 1,639 3,600 Manual PDF, Scanned Books, Scientific journals, English

Forms, Financial statements
UNLV [45] 2,889 558 Manual Scanned Technical reports, magazines, English

Business letters, Newspapers
DeepFigures [46] 5.5M 1.4M Automatic PDF Research articles English
Marmot [10] 2000 958 Semi-automatic PDF Books and Research articles English, Chinese
TNCR [1] 6,621 9,428 Semi automatic PDF and Scanned - English
STDW [18] 7,000 12,431 Manual PDF Invoices, Research papers, English, German,

Books Japanese, Hindi, etc.
ICT-TD [57] 5000 - Manual PDF ICT commodities English
TableBank [29] - 417,234 Automatic Word and Latex - English, Chinese,

documents Japanese, Arabic
PubTables-1M [47] 1M 948K Automatic PDF Scientific articles English
UniTabBank (ours) 55,443 82,114 Semi automatic PDF, Scanned, Annual reports, Books, 28 languages — English,

Photographed Magazines, Newspapers Arabic, Urdu, Hindi, etc.

Table 1. Shows table detection benchmark datasets along with UniTabBank. A.M. denotes the annotation mechanism.

of scanned and photographed documents, the UniTabBank
dataset offers substantial diversity and closely reflects real-
world document scenarios. Scale and Annotation Quality:
UniTabBank contains 55,443 document page images with
82,114 accurately annotated table instances, offering scale
and annotation precision. Several examples of the UniTab-
Bank dataset are shown in Fig. 1. In addition, we introduce
UniTabDet, a YOLO-based [28] model for accurate and ef-
ficient table detection.

The contributions of this paper are summarized as fol-
lows:
• UniTabBank is the first table detection dataset to com-

bine real-world documents — captured through photog-
raphy, scanning, and born-digital documents. It uniquely
supports 28 languages, making it the most linguistically
diverse resource. With coverage across four representa-
tive document types and multiple document layout struc-
tures,
UniTabBank provides a comprehensive foundation for
developing robust and generalizable table detection mod-
els.

• We demonstrate the generalization capability of UniTab-
Bank by training UniTabDet on both benchmark-specific
datasets and UniTabBank and evaluating across multiple
test benchmarks. Models trained on UniTabBank consis-
tently achieve strong performance across diverse datasets,
highlighting its advantage over existing benchmarks.

• We evaluate the performance of our UniTabDet model
across nine table detection benchmarks – ICDAR-
2013 [17], ICDAR-2019 [13], UNLV [45], Marmot [10],
ICT-TD [57], TNCR [1], STDW [18], TableBank [29],
and PubTables-1M [47]. UniTabDet consistently outper-
forms state-of-the-art methods on all benchmarks, with
the exception of ICDAR-2019 [13].

• We conduct a detailed model performance analysis across
different document types and languages, offering key in-
sights into their generalization capabilities. Additionally,
our ablation studies examine the choice of model archi-
tecture, the impact of language/script, varying IoU thresh-
olds, and model sizes, highlighting trade-offs between de-
tection accuracy and model complexity.

2. Related Work
2.1. Table Detection Methods
Early research on table detection in document images be-
gan in 1993 with rule-based methods. Itonori [24] pro-
posed using text-block arrangements and ruled lines, while
Chandran and Kasturi [6] relied on horizontal and verti-
cal line detection. Subsequent works [14, 21, 22, 34, 52]
refined these heuristics, but such methods required exten-
sive manual tuning and lacked generalization across diverse
layouts. In 1997, Pyreddy and Croft [37] introduced tech-
niques using character alignment, holes, and gaps, while
Seo et al. [44] and Kasar et al. [26] leveraged junction de-
tection. Kasar et al. further improved accuracy by inte-
grating junction features with an SVM classifier, signaling
a shift toward machine-learning approaches for more robust
and scalable table detection.

Hao et al. [19] first applied convolutional neural net-
works (CNNs) to classify heuristic-based table-like regions
from PDFs as table or non-table. However, their approach
is limited by its dependence on heuristic region extraction
and its applicability only to non-raster PDFs. TableNet [33]
used FCN [32] to detect table and row and column of tables.
TableSense [7] is a CNN-based model specifically enhanced
for detecting tables in spreadsheet documents, incorporat-
ing tailored modifications to handle their unique structure



effectively.
Many recent studies have explored the table detection

problem. A common approach involves treating tables in
visually rich documents as visual objects and applying stan-
dard object detection methods to identify them. Gilani
et al. [16] applied Faster R-CNN [42] for table detection,
using distance-transformed images instead of raw docu-
ments better to adapt the pre-trained model across diverse
document types. Sun et al. [48] refined table boundaries
by combining corner information with Faster R-CNN out-
puts, reducing false positives. Due to the limited number
of training samples for the table detection problem, trans-
fer learning methods are widely used. Multi-Type-TD-
TSR [12] used Faster R-CNN [42] to extract tables from
documents. In [5], the authors show that fine-tuning ob-
ject detection models (Mask R-CNN [20], RetinaNet [30],
SSD [31], YOLO [41]) on a closely related domain helps
prevent overfitting and improves performance across tasks.
CDeC-Net [2] used Cascade Mask R-CNN [3] that incorpo-
rates a dual-backbone architecture for table detection. Cas-
cadeTabNet [36], built on Cascade Mask R-CNN [3] with
an HRNet [54] backbone, employs two-stage transfer learn-
ing and data augmentation. Similarly, TableDet [11], based
on Cascade R-CNN [3], introduces Table-Aware Cutout
augmentation and a two-step transfer learning strategy to
boost performance. Xiao et al. [56] employed SparseR-
CNN [49] as the base model and enhanced it with Noise-
Augmented Region Proposal Generation, Many-to-One La-
bel Assignment, and a Decoupled IoU strategy to improve
the accuracy of table detection.

In addition to two-stage detectors, one-stage methods
like YOLO [41] and its variants have also been applied to
table detection. YOLOv3-TD [23] builds on YOLOv3 [40],
introducing adaptive modifications such as optimized an-
chor selection and an improved post-processing pipeline.
Beyond one-stage and two-stage methods, transformer-
based models like DETR [4], ViT [8], and Deformable-
DETR [60] have also been explored for table detection in
Table-Transformer [47], TransTab [55], and TNCR [1].

2.2. Datasets for Table Detection

Several benchmarks support table detection research. The
ICDAR-2013 dataset [17] contains 238 pages from 67 gov-
ernment PDFs (EU and US), with 150 tables annotated as
rectangular regions. The UNLV dataset [45] offers 1,639
scanned images from diverse sources, with 558 table zones
annotated at both table and cell levels. DeepFigures [46]
provides 5.5M scientific pages from arXiv and PubMed, in-
cluding 1.4M tables and 4M figures, supporting large-scale
analysis. The ICDAR-2019 dataset [13] includes 2,439 im-
ages from historical and modern documents, with annota-
tions for table regions and cell structures in scanned and
digital formats.

The Marmot dataset [10] features 2,000 bilingual PDF
pages (Chinese and English) with diverse layouts and table
styles, supporting both detection and structure recognition.
The TNCR dataset [1] contains a mix of scanned and digi-
tal documents across multiple domains, annotated for bor-
dered and borderless tables — highlighting the challenge of
detecting tables lacking visible boundaries. The STDW [18]
dataset comprises 7,294 document images containing tables
sourced from a wide range of domains, including electronic
component datasheets, material safety data sheets, product
safety sheets, billing invoices, research papers, financial re-
ports, and books. The ICT-TD dataset [57] comprises 5,000
PDF images collected from documents related to Informa-
tion and Communication Technology (ICT) products and
services. The CamCap [43] comprises 85 camera-captured
images, testing detection robustness on curved and flat sur-
faces.

The TableBank [29] is a large-scale dataset with
417K labeled tables from Word and LaTeX documents
(2014–2018), with 145K pages offering structure-level an-
notations. The PubTables-1M [47] comprises nearly one
million tables with detailed header and spatial annotations,
supporting various input modalities and addressing anno-
tation inconsistencies through canonicalization. The CTE
dataset [15] includes 75K annotated scientific pages (35K
tables), combining annotations from PubTables-1M [47]
and PubLayNet [59], and extending them with new CTE-
specific classes.

3. UniTabBank Dataset
The UniTabBank dataset comprises a total of 55,443 docu-
ment images, organized into four primary categories based
on content and layout: Annual Report (55%), Book
(21%), Magazine (18%), and Newspapers (6%). These
document images are available in three formats: PDFs,
photographed documents, and scanned documents. The
dataset spans 28 languages, including Arabic, Assamese,
Bengali, Bodo, Chinese, English, Farsi, French, Gujarati,
Hindi, Indonesian, Japanese, Kannada, Korean, Malay-
alam, Manipuri, Marathi, Nepali, Oriya, Punjabi, San-
skrit, Sinhala, Spanish, Tamil, Telugu, Thai, Urdu, and Viet-
namese. In total, the dataset contains 82,114 annotated ta-
ble instances. Tables exhibit a wide variety of table layout
structures, including (i) bordered tables with complete row
and column separators, (ii) bordered tables without row and
column separators, (iii) borderless tables with row and col-
umn separators, (iv) bordered tables with partial separators,
(v) tables containing merged cells, and (vi) tables without
merged cells.

The UniTabBank dataset is constructed through a care-
fully stratified sampling strategy to maximize diversity and
generalization. It spans 28 languages, four document cat-
egories (annual reports, books, magazines, and newspa-



Document Type Image Document Type Table
Total Training Validation Test Total Training Validation Test

number number number number number number number number
Annual Report 30573 18344 3078 9151 Annual Report 44456 26639 4459 13358
Book 11894 7148 1215 3531 Book 15827 9453 1574 4800
Magazine 9927 5955 1012 2960 Magazine 13020 7784 1310 3926
Newspaper 3049 1786 308 955 Newspaper 8811 4862 838 3111
Total 55443 33233 5613 16597 Total 82114 48738 8181 25195

Table 2. Shows summary of table frequencies across different document categories and their distribution within each dataset split of
UniTabBank dataset.

pers), and three acquisition modes (PDFs, scanned copies,
and photographed documents). For each language–category
combination, documents were sourced from multiple pub-
lic repositories and publishers to minimize domain bias1.
This systematic approach ensures that UniTabBank cap-
tures a broad spectrum of layouts, visual qualities, and con-
tent types, making it a robust and representative benchmark
for cross-domain table detection research. The origin and
composition of each subset are detailed below.

• The Annual Report subset comprises 30,573 document
images across 19 languages: Arabic, Bengali, Chinese,
English, French, Gujarati, Hindi, Indonesian, Japanese,
Kannada, Korean, Malayalam, Marathi, Oriya, Sinhala,
Spanish, Tamil, Thai, and Vietnamese. The correspond-
ing PDFs were sourced from various public repositories
and archives. These PDFs were subsequently converted
into document images. This subset contains a total of
44,456 annotated table instances.

• The Book subset comprises 11,894 scanned document
images from textbooks spanning four educational levels
— elementary, middle school, high school, and college
and covering 29 subjects such as Mathematics, Physics,
Chemistry, Biology, History, Geography, Politics, Eco-
nomics, Social Science, and Computer Science. The
subset represents content in 19 languages: Arabic, As-
samese, Bengali, Bodo, English, Farsi, Gujarati, Hindi,
Kannada, Malayalam, Manipuri, Marathi, Nepali, Oriya,
Punjabi, Sanskrit, Tamil, Telugu, and Urdu. In total, it
includes 15,827 annotated table instances.

• The Magazine subset contains 9,927 document images
sourced from both PDF-format magazines and scanned
pages, collected from multiple platforms. It includes
13,020 annotated table instances and content in 13 lan-
guages: Assamese, Bengali, English, Gujarati, Hindi,
Kannada, Malayalam, Marathi, Oriya, Punjabi, Tamil,
Telugu, and Urdu.

• The Newspaper subset includes 3049 document images
in PDF format, sourced from various publishers and pho-
tographed samples. It covers 12 languages — Bengali,

1A complete list of sources is provided in Appendix A of the supplemen-
tary material.

English, Gujarati, Hindi, Kannada, Malayalam, Marathi,
Oriya, Punjabi, Tamil, Telugu, and Urdu and contains a
total of 8,811 annotated table instances.
To ensure fair evaluation, we divided the dataset into
training, validation, and test sets following a 7:1:2 ra-
tio. We maintained a balanced distribution of label (table)
across all three sets. Table 2 provides a summary of ta-
ble frequencies across different document categories and
their distribution within each dataset split2.

3.1. Data Annotation
We adopt a two-stage framework for annotating tables
in document images: (i) automatic detection and (ii)
manual verification and correction. Initially, we em-
ploy DocLayOut-YOLO [58] to automatically detect tables
within the document images. The manual verification stage
is carried out by five trained annotators with prior expe-
rience in document annotation. Each annotator follows a
detailed guideline that specified how to correct bounding
boxes, handle borderline cases (e.g., tables without border-
lines), and resolve ambiguous table boundaries. To ensure
quality, we adopt a two-pass verification protocol: an inde-
pendent second annotator re-checks a random 20% of the
samples. The measured inter-annotator agreement (IoU >
0.9) is consistently high, confirming reliability and the high
quality of the annotations. The annotation files follow the
Pascal VOC annotation format [9] for object detection.

4. Experiments
Baseline and Implementation Details: Our baseline
UniTabDet is built on the YOLOv11 architecture [28].
YOLOv11 is the latest advancement in the YOLO family,
designed for efficient and accurate real-time object detec-
tion. Its architecture introduces key innovations such as the
C3k2 block, SPPF (Spatial Pyramid Pooling), and C2PSA
(Parallel Spatial Attention), which improve feature extrac-
tion and attention to important regions. The model supports
multiple tasks beyond detection, including instance seg-
mentation, pose estimation, image classification, and ori-

2For detailed language-wise table frequencies and additional visual ex-
amples, refer to Appendix B in the supplementary material.



ented object detection. With variants ranging from nano
to extra-large, YOLOv11 balances speed, accuracy, and pa-
rameter efficiency, making it versatile for edge devices and
high-performance computing applications. All experiments
are conducted using four NVIDIA GeForce RTX 2080 Ti
GPUs (each with 12 GB memory). We train the model for
300 epochs using an input resolution of 1280 and a batch
size 8. The training setup includes a learning rate 0.01,
weight decay of 0.0005, and momentum of 0.937.

Datasets: We use nine table detection (TD) benchmarks
— ICDAR-2013 [17], UNLV [45], ICDAR-2019 [13], Mar-
mot [10], TNCR [1], STDW [18], ICT-TD [57], Table-
Bank [29], and PubTables-1M [47].

Evaluation Metrices: We assess model performance us-
ing standard evaluation metrics: precision (P), recall (R),
and F1 score [2, 13, 55], calculated at various Intersection-
over-Union (IoU) thresholds. To provide a holistic view of
detection quality, we also report the weighted average F1
score [13, 56] and average precision metrics — AP50, AP75,
and mean AP over the IoU range [0.50–0.95] [18, 47]3.

5. Result Analysis

5.1. Generalization Capability of UniTabBank
Training on benchmark-specific datasets typically yields
the best in-domain accuracy, but such models fail to gen-
eralize to unseen domains. UniTabBank is designed
to overcome this limitation by offering document lin-
guistic, layout, type, and format diversity. To validate
this, we trained UniTabDet (YOLOv11-based) on both
benchmark-specific datasets and UniTabBank, and evalu-
ated across multiple test benchmarks. Results in Table 3
show that while in-domain training achieves near-perfect
accuracy (e.g., PubTables → PubTables: AP=0.989, Table-
Bank → TableBank: AP=0.958, UniTabBank → UniTab-
Bank: AP=0.959), these models perform poorly on un-
seen datasets (e.g., PubTables → UNLV: AP=0.417, Table-
Bank → UNLV: AP=0.288). In contrast, UniTabBank-
trained models achieve consistently high performance
across diverse benchmarks (e.g., AP=0.826 on PubTables,
AP=0.899 on TableBank, AP=0.773 on UNLV, AP=0.928
on STDW), often outperforming single-benchmark mod-
els. Other datasets, such as ICT-TD, TNCR, and ICDAR-
2019, provide moderate cross-domain robustness (AP≈0.80
- 0.88) but do not match UniTabBank’s breadth. These
findings highlight the generalization capability of UniTab-
Bank4.

3For further details, see Appendix C in the supplementary material.
4Additional cross-benchmark dataset results are provided in Appendix

D of the supplementary material.

Training Set Test Set AP50 AP75 AP
PubTables 0.994 0.994 0.989
TableBank 0.863 0.734 0.665
UniTabBank PubTables 0.993 0.947 0.826
ICT-TD 0.981 0.933 0.828
TNCR 0.985 0.916 0.810
ICDAR-2019 0.985 0.924 0.821
PubTables 0.840 0.719 0.606
TableBank 0.980 0.973 0.958
UniTabBank TableBank 0.933 0.921 0.899
ICT-TD 0.921 0.898 0.865
TNCR 0.916 0.895 0.871
ICDAR-2019 0.916 0.893 0.859
PubTables 0.599 0.523 0.439
TableBank 0.742 0.694 0.661
UniTabBank UniTabBank 0.981 0.971 0.959
ICT-TD 0.877 0.830 0.797
TNCR 0.851 0.793 0.767
ICDAR-2019 0.878 0.828 0.794
PubTables 0.604 0.498 0.417
TableBank 0.391 0.314 0.288
UniTabBank UNLV 0.914 0.854 0.773
ICT-TD 0.663 0.568 0.500
TNCR 0.806 0.723 0.635
ICDAR-2019 0.729 0.653 0.568
PubTables 0.699 0.594 0.519
TableBank 0.675 0.642 0.632
UniTabBank STDW 0.964 0.949 0.928
ICT-TD 0.926 0.895 0.875
TNCR 0.888 0.853 0.830
ICDAR-2019 0.929 0.897 0.879

Table 3. Cross-benchmark evaluation of UniTabDet trained on
different datasets and tested across multiple benchmarks. Mod-
els trained on benchmark-specific datasets achieve high in-domain
accuracy but generalize poorly, whereas the models trained with
UniTabBank achieve consistently strong cross-domain perfor-
mance. Bold and underlined values represent the best and second-
best results, respectively.

5.2. Comparison with SOTA on TD Benchmarks

Table 4 shows that UniTabDet†, fine-tuned using only
20,000 images from the TableBank dataset, outperforms
the leading method CascadeTabNet [36] by 2.1%, demon-
strating strong performance with limited supervision. Ta-
ble 5 presents results on the PubTables-1M dataset, show-
ing that our fine-tuned UniTabDet† — trained with only
20,000 samples — outperforms the state-of-the-art Table-
Transformer [47] by 2.4%5.

5Additional quantitative results are provided in Appendix E, and visual
samples in Appendix F of the supplementary material.



Method Train Test: TableBank
Dataset #Image Word+Latex

P R F1
Li et al. [29] TableBank 260582 0.966 0.899 0.931
CTabNet [36] TableBank 260582 0.929 0.957 0.943
CDeC-Net [2] TableBank 260582 0.934 0.924 0.929
UniTabDet UniTabBank 55,443 0.909 0.965 0.936
UniTabDet† TabelBank 20000 0.949 0.979 0.964

Table 4. Performance evaluation on TableBank using precision
(P), recall (R) and F1 score at IoU=0.5. † models fine-tuned with
only on 20K samples from TableBank. Bold and underlined values
indicate the best and second-best results, respectively.

Model Train Test: PubTables
Dataset #Image AP50 AP75 AP

Table-Transformer [47] PubTables 460,589 0.995 0.989 0.970
TabSniper [50] BankTabNet 9724 0.939 0.906 0.852
ClusterTabNet [35] PubTables 460,589 0.990 - 0.989
UniTabDet UniTabBank 55,443 0.993 0.947 0.826
UniTabDet† PubTables 20,000 0.995 0.995 0.994

Table 5. Performance evaluation on PubTables-1M using ob-
ject detection metrics. † models fine-tuned on the PubTables-1M
dataset. Bold and underlined values indicate the best and second-
best results, respectively.

5.3. Analysis on Failure Cases
Although UniTabDet trained on UniTabBank demon-
strates strong performance across multiple benchmarks,
Fig. 4 presents several representative failure cases that re-
veal its current limitations. In datasets like UNLV, PubTa-
bles, and TNCR, errors frequently occur when tables lack
clear row and column separators or well-defined headers,
making it challenging for the model to infer the structure
accurately. Similarly, in ICDAR-2019, the model strug-
gles with archival documents, where degraded scan qual-
ity, faded ink, or full-page spanning tables reduce detec-
tion accuracy. The ICT-TD dataset poses additional chal-
lenges due to its unconventional or highly complex table
layouts, which often deviate from standard structures and
cause boundary localization errors. These examples high-
light that while UniTabDet achieves robust overall perfor-
mance, it remains sensitive to ambiguous, noisy, or irregular
table formats. Addressing these limitations is important for
improving the model’s robustness and generalization in fu-
ture work.

5.4. Ablation Study
Choice of Architecture: We selected YOLOv11
(UniTabDet) as a baseline because it provides an efficient,
scalable, and robust baseline for table detection while
ensuring fast inference and easy deployment. Our aim is
to highlight the value of UniTabBank rather than propose

ICDAR-2019 ICT-TD TNCR

STDW PubTables TableBank

UNLV Marmot UniTabBank

Figure 3. Shows visual results of multiple benchmarks using
UniTabDet. The red dotted box represents the detected tables by
UniTabDet, while the blue boxes indicate corresponding ground
truths.

UNLV ICDAR-2019 ICT-TD

Marmot PubTables TNCR

Figure 4. Shows a few failure results on multiple benchmarks us-
ing UniTabDet. The red dotted box represents the detected ta-
bles by UniTabDet, while the blue boxes indicate corresponding
ground truths.

a novel architecture. As shown in Table 6, UniTabDet
achieves the highest accuracy (AP = 0.959), outperforming
both DocLayOut built on YOLOv10 [53] (AP = 0.956) and
TATR (AP = 0.723). This demonstrates that UniTabDet of-
fers the best balance of accuracy, robustness, and practical
usability.



Model AP50 AP75 AP
DocLayOut [58] 0.984 0.972 0.956
TATR [47] 0.895 0.780 0.723
SparseTableDet [56] 0.927 0.899 0.874
UniTabDet 0.981 0.971 0.959

Table 6. Comparison of UniTabDet with DocLayOut, TATR, and
SparseTableDet on UniTabBank. Results show that UniTabDet
achieves the highest accuracy (AP), justifying its choice as the
backbone for our benchmark. Bold and underlined values rep-
resent the best and second-best results, respectively.

Model Parameters: Table 7 presents the relationship be-
tween model size and performance. The largest UniTab-
Det model, with 56.9M parameters, achieves the highest
AP of 0.959. However, a significantly smaller model with
only 2.6M parameters shows just a minor drop of 0.4% in
AP. This indicates that lightweight models can deliver com-
petitive performance while being more suitable for deploy-
ment in real-world applications with limited computational
resources.

Model #Params (M) Test: UniTabBank
AP50 AP75 AP

UniTabDet (n) 2.6 0.984 0.972 0.955
UniTabDet (s) 9.4 0.982 0.971 0.953
UniTabDet (m) 20.1 0.981 0.970 0.954
UniTabDet (l) 25.3 0.985 0.973 0.955
UniTabDet (x) 56.9 0.981 0.971 0.959

Table 7. Performance comparison on the UniTabBank dataset us-
ing different UniTabDet model variants. Here, n, s, m, l, and x
represent the tiny, small, medium, large, and extra-large configu-
rations, respectively.

Impact of IoU: Table 3 presents the performance of
UniTabDet trained with UniTabBank, across multiple
benchmarks at different IoU thresholds. The results show
that the Average Precision (AP) at IoU 0.75 and the mean
AP over IoU [0.5–0.95] are closely aligned with the AP
at IoU 0.5 (UniTabBank, TableBank, PubTables, STDW).
This consistency across thresholds indicates the robustness
and reliability of the model in accurately detecting tables
under varying evaluation criteria.

Importance of Language: To assess the influence of lan-
guage or script on table detection, we apply three different
blurring techniques to the training images — Gaussian blur
(0,5), Median blur (7×7), and Average blur (9×9) — to
suppress textual details while preserving structural layout.
Examples of the original and blurred images are shown in
Fig. 5. Using these modified training sets, we train three
models: UniTabDetα, UniTabDetβ , and UniTabDetγ , cor-
responding to the respective blur types. Table 8 shows per-
formance drops of 0.8%, 3.7%, and 2.2% (AP at IoU [0.5-
0.95]) for UniTabDetα, UniTabDetβ , and UniTabDetγ ,

respectively, compared to the original UniTabDet, indicat-
ing that table detection depends little on the script or lan-
guage of the table content.

(a) (b) (c)

Figure 5. Example of (a) a training image and its corresponding
blurred versions (with content in a mixture of English and Tel-
ugu languages) using (b) Gaussian blur and (c) average blur tech-
niques. Better view in Zoom.

Model Blur Test: UniTabBank
AP50 AP75 AP

UniTabDetα Gaussian 0.985 0.972 0.951
UniTabDetβ Median 0.972 0.954 0.922
UniTabDetγ Average 0.983 0.965 0.937
UniTabDet - 0.981 0.971 0.959

Table 8. Performance comparison between the original UniTab-
Det and its blurred variants to evaluate the impact of table content
language on detection accuracy.

6. Conclusion

This paper presents UniTabBank, a large-scale table de-
tection dataset comprising four document types collected
through PDF rendering, scanning, and photographing. De-
signed to reflect real-world scenarios, UniTabBank offers
diverse formats, languages, layouts, and acquisition condi-
tions, making it a strong benchmark for robust table detec-
tion. We introduce UniTabDet, a YOLO-based table detec-
tion model, and evaluate it on nine widely used table de-
tection benchmarks. Across all benchmarks, UniTabDet
consistently outperforms existing state-of-the-art methods.
We train the model on both individual benchmark datasets
and on UniTabBank, then test it across multiple bench-
marks. Models trained on UniTabBank achieve consis-
tently strong results across diverse datasets, demonstrating
superior cross-dataset generalization compared to existing
benchmarks.
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[17] Max Göbel, Tamir Hassan, Ermelinda Oro, and Giorgio Orsi.
Icdar 2013 table competition. In ICDAR, pages 1449–1453,
2013. 1, 2, 3, 4, 6

[18] Mrinal Haloi, Shashank Shekhar, Nikhil Fande, Sid-
dhant Swaroop Dash, et al. Table detection in the wild:
A novel diverse table detection dataset and method. arXiv
preprint arXiv:2209.09207, 2022. 2, 3, 4, 6

[19] Leipeng Hao, Liangcai Gao, Xiaohan Yi, and Zhi Tang. A
table detection method for pdf documents based on convolu-
tional neural networks. In DAS, pages 287–292, 2016. 3

[20] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Gir-
shick. Mask R-CNN. In ICCV, pages 2961–2969, 2017. 4

[21] Yuki Hirayama. A method for table structure analysis using
dp matching. In ICDAR, pages 583–586, 1995. 3

[22] Jianying Hu, Ramanujan S Kashi, Daniel P Lopresti, and
Gordon Wilfong. Medium-independent table detection. In
DRR, pages 291–302, 1999. 3

[23] Yilun Huang, Qinqin Yan, Yibo Li, Yifan Chen, Xiong
Wang, Liangcai Gao, and Zhi Tang. A yolo-based table de-
tection method. In ICDAR, pages 813–818, 2019. 1, 4

[24] Katsuhiko Itonori. Table structure recognition based on
textblock arrangement and ruled line position. In ICDAR,
pages 765–768, 1993. 3

[25] Pongsakorn Jirachanchaisiri, Nam Tuan Ly, and Atsuhiro
Takasu. Trh2tqa: Table recognition with hierarchical rela-
tionships to table question-answering on business table im-
ages. In WACV, pages 8844–8852, 2025. 1

[26] Thotreingam Kasar, Philippine Barlas, Sebastien Adam,
Clément Chatelain, and Thierry Paquet. Learning to detect
tables in scanned document images using line information.
In ICDAR, pages 1185–1189, 2013. 3

[27] Mahmoud salaheldin Kasem, Abdelrahman Abdallah,
Alexander Berendeyev, Ebrahem Elkady, Mohamed Mah-
moud, Mahmoud Abdalla, Mohamed Hamada, Sebastiano
Vascon, Daniyar Nurseitov, and Islam Taj-eddin. Deep learn-
ing for table detection and structure recognition: A survey.
ACM Computing Surveys, 56(12), 2024. 1

[28] Rahima Khanam and Muhammad Hussain. Yolov11: An
overview of the key architectural enhancements. arXiv
preprint arXiv:2410.17725, 2024. 3, 5

[29] Minghao Li, Lei Cui, Shaohan Huang, Furu Wei, Ming
Zhou, and Zhoujun Li. TableBank: Table benchmark for
image-based table detection and recognition. In COLING,
pages 1918–1925, 2020. 1, 2, 3, 4, 6, 7

[30] Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and
Piotr Dollár. Focal loss for dense object detection. In ICCV,
pages 2980–2988, 2017. 4

[31] Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian
Szegedy, Scott Reed, Cheng-Yang Fu, and Alexander C
Berg. SSD: Single shot multibox detector. In ECCV, pages
21–37, 2016. 4



[32] Jonathan Long, Evan Shelhamer, and Trevor Darrell. Fully
convolutional networks for semantic segmentation. In
CVPR, pages 3431–3440, 2015. 3

[33] Shubham Singh Paliwal, D Vishwanath, Rohit Rahul,
Monika Sharma, and Lovekesh Vig. TableNet: Deep learn-
ing model for end-to-end table detection and tabular data ex-
traction from scanned document images. In ICDAR, pages
128–133, 2019. 3

[34] Ricardo Wandré Dias Pedro, Fátima LS Nunes, and Ariane
Machado-Lima. Using grammars for pattern recognition in
images: a systematic review. ACM CSUR, 46(2):1–34, 2013.
3

[35] Marek Polewczyk and Marco Spinaci. ClusterTabNet: Su-
pervised clustering method for table detection and table
structure recognition. In ICDAR, pages 334–349, 2024. 7

[36] Devashish Prasad, Ayan Gadpal, Kshitij Kapadni, Manish
Visave, and Kavita Sultanpure. CascadeTabNet: An ap-
proach for end to end table detection and structure recogni-
tion from image-based documents. In CVPRW, pages 572–
573, 2020. 1, 4, 6, 7

[37] P Pyreddy and WB Croft. Tinti: A system for retrieval in
text tables title2, 1997. 3

[38] Sachin Raja, Ajoy Mondal, and CV Jawahar. Visual under-
standing of complex table structures from document images.
In WACV, pages 2299–2308, 2022. 1

[39] Sachin Raja, Ajoy Mandal, and CV Jawahar. Treading
towards privacy-preserving table structure recognition. In
WACV, pages 2311–2321, 2025. 1

[40] Joseph Redmon and Ali Farhadi. Yolov3: An incremental
improvement. arXiv preprint arXiv:1804.02767, 2018. 1, 4

[41] Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali
Farhadi. You only look once: Unified, real-time object de-
tection. In CVPR, pages 779–788, 2016. 4

[42] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun.
Faster R-CNN: Towards real-time object detection with re-
gion proposal networks. NeurIPs, 28, 2015. 1, 4

[43] Wonkyo Seo, Hyung Il Koo, and Nam Ik Cho. Junction-
based table detection in camera-captured document images.
IJDAR, 18:47–57, 2015. 2, 4

[44] Wonkyo Seo, Hyung Il Koo, and Nam Ik Cho. Junction-
based table detection in camera-captured document images.
IJDAR, 18:47–57, 2015. 3

[45] Faisal Shafait and Ray Smith. Table detection in heteroge-
neous documents. In DAS, pages 65–72, 2010. 2, 3, 4, 6

[46] Noah Siegel, Nicholas Lourie, Russell Power, and Waleed
Ammar. Extracting scientific figures with distantly super-
vised neural networks. In ACM/IEEE JCDL, pages 223—-
232, 2018. 2, 3, 4

[47] B Smock, R Pesala, and R Abraham. Pubtables-1m: To-
wards comprehensive table extraction from unstructured
documents. In CVPR, pages 4624–4632, 2021. 1, 2, 3, 4,
6, 7, 8

[48] Ningning Sun, Yuanping Zhu, and Xiaoming Hu. Faster r-
cnn based table detection combining corner locating. In IC-
DAR, pages 1314–1319, 2019. 1, 4

[49] Peize Sun, Rufeng Zhang, Yi Jiang, Tao Kong, Chenfeng
Xu, Wei Zhan, Masayoshi Tomizuka, Lei Li, Zehuan Yuan,

Changhu Wang, et al. Sparse R-CNN: End-to-end object
detection with learnable proposals. In CVPR, pages 14454–
14463, 2021. 4

[50] Abhishek Trivedi, Sourajit Mukherjee, Rajat Kumar Singh,
Vani Agarwal, Sriranjani Ramakrishnan, and Himanshu S
Bhatt. TabSniper: Towards accurate table detection &
structure recognition for bank statements. arXiv preprint
arXiv:2412.12827, 2024. 7

[51] David Tschirschwitz and Volker Rodehorst. Cisol: An open
and extensible dataset for table structure recognition in the
construction industry. In WACV, pages 7605–7613, 2025. 1

[52] Scott Tupaj, Zhongwen Shi, C Hwa Chang, and Hassan
Alam. Extracting tabular information from text files. EECS
Department, Tufts University, Medford, USA, 1, 1996. 3

[53] Ao Wang, Hui Chen, Lihao Liu, Kai Chen, Zijia Lin, Jun-
gong Han, et al. Yolov10: Real-time end-to-end object de-
tection. In NeurIPS, pages 107984–108011, 2024. 7

[54] Jingdong Wang, Ke Sun, Tianheng Cheng, Borui Jiang,
Chaorui Deng, Yang Zhao, Dong Liu, Yadong Mu, Mingkui
Tan, Xinggang Wang, et al. Deep high-resolution represen-
tation learning for visual recognition. IEEE trans. on PAMI,
43(10):3349–3364, 2020. 4

[55] Yongzhou Wang, Wenliang Lv, Weijie Wu, Guanheng Xie,
BiBo Lu, ChunYang Wang, Chao Zhan, and Baishun Su.
TransTab: A transformer-based approach for table detec-
tion and tabular data extraction from scanned document im-
ages. Machine Learning with Applications, pages 100665–
100678, 2025. 1, 4, 6

[56] Bin Xiao, Murat Simsek, Burak Kantarci, and Ala Abu
Alkheir. Table detection for visually rich document images.
Knowledge-Based Systems, 282:111080–111115, 2023. 1, 2,
4, 6, 8

[57] Bin Xiao, Murat Simsek, Burak Kantarci, and Ala Abu
Alkheir. Revisiting table detection datasets for visually rich
documents. IJDAR, pages 1–20, 2025. 2, 3, 4, 6

[58] Zhiyuan Zhao, Hengrui Kang, Bin Wang, and Conghui
He. Doclayout-yolo: Enhancing document layout analysis
through diverse synthetic data and global-to-local adaptive
perception. arXiv preprint arXiv:2410.12628, 2024. 5, 8

[59] Xu Zhong, Jianbin Tang, and Antonio Jimeno Yepes. Pub-
laynet: largest dataset ever for document layout analysis. In
ICDAR, pages 1015–1022, 2019. 2, 4

[60] Xizhou Zhu, Weijie Su, Lewei Lu, Bin Li, Xiaogang Wang,
and Jifeng Dai. Deformable DETR: Deformable trans-
formers for end-to-end object detection. arXiv preprint
arXiv:2010.04159, 2020. 1, 4


	Introduction
	Related Work
	Table Detection Methods
	Datasets for Table Detection

	UniTabBank Dataset
	Data Annotation

	Experiments
	Result Analysis
	Generalization Capability of UniTabBank
	Comparison with SOTA on TD Benchmarks
	Analysis on Failure Cases
	Ablation Study

	Conclusion

